Средние величины. Анализ вариационных рядов. Оценка достоверности различий средних и относительных величин.

Вариационные ряды

• Вариационный ряд — ряд, в котором сопоставлены (по степени возрастания или убывания) варианты и соответствующие им частоты

- Варианты (V) отдельные количественные выражения признака
- Частоты (Р) числа, показывающие, сколько раз повторяются варианты

Виды вариационных рядов

 простой – когда каждая варианта встречается только один раз.
 Математически: все частоты равны 1.

- *взвешенный* когда одна или несколько вариант повторяются.
 - В данном случае значения одной или нескольких частот более 1.

Примеры вариационных рядов

Простой:

Значения артериального давления у 10 обследованных пациентов (мм рт.ст.):

160; 162; 165; 170; 173; 180; 185; 186; 190; 200

Длительность амбулаторного приема у врача-хирурга (мин):

10; 12; 15; 16; 18; 20; 25; 30

Примеры вариационных рядов

•Взвешенный:

Значения частоты сердечных сокращений у пациентов с тахикардией (мин⁻¹):

ЧСС, мин ⁻¹ , V	Число пациентов, Р
100	3
112	5
120	6
124	4
128	2
ВСЕГО:	20

Показатели вариационного ряда

<u>Пример:</u> средняя длительность стационарного лечения больных острым аппендицитом:

Средняя длительность лечения, койко-дни (V)	Число больных, чел. (Р)
5	1
6	5
7	20
8	12
9	10
10	5
11	2
Сумма:	<mark>55</mark>

n = 55 (n - число исследуемых).

Средние величины

• Средняя арифметическая (M) — характеризует большую совокупность однородных явлений

Средняя арифметическая простая

$$M = \frac{\sum V}{n}$$

Средняя арифметическая взвешенная

$$M = \frac{\sum V \cdot P}{n}$$

Расчет средней арифметической

Длительность лечения (койко-дни), ∨	Число больных (чел.), Р	V×P	
5	1	5	
6	5	30	
7	20	140	
8	12	96	
9	10	90	
10	5	50	
11	2	22	
Сумма:	55	433	

$$M = \frac{\sum (V \times P)}{n} = \frac{433}{55} = 7,87$$

Средние величины

• Мода (Mo) — наиболее часто повторяющаяся варианта

Пример: Мо = 7, т.к. у большинства больных (20 человек) длительность стационарного лечения составляет 7 койко-дней.

• Медиана (Ме) — значение варианты, делящей вариационный ряд пополам: по обе стороны от нее находится равное число вариант

<u>Пример:</u> $Me = V_{28} = 8$

Показатели вариабельности ряда

Длительность лечения (койко-дни), V	Число больных (чел.), Р	V×P	Отклонение вариант от средней, d	d ²	d ² ×P
5	1	5	-2,87	8,24	8,24
6	5	30	-1,87	3,50	17,5
7	20	140	-0,87	0,76	15,2
8	12	96	0,13	0,02	0,24
9	10	90	1,13	1,28	12,8
10	5	50	2,13	4,54	22,7
11	2	22	3.13	9,80	19,6
Сумма:	<mark>5</mark> 5	433	-	-	96,28

Показатели вариабельности ряда

• Среднее квадратическое отклонение (сигмальное отклонение, сигма) — определяет степень варьирования данных

$$\sigma = \pm \sqrt{\frac{\sum d^2 \cdot P}{n}}$$

Если n > 30

$$\sigma = \pm \sqrt{\frac{\sum d^2 \cdot P}{n-1}}$$

Если п ≤ 30

$$\sigma = \pm \sqrt{\frac{96,28}{55}} = \pm 1,33$$

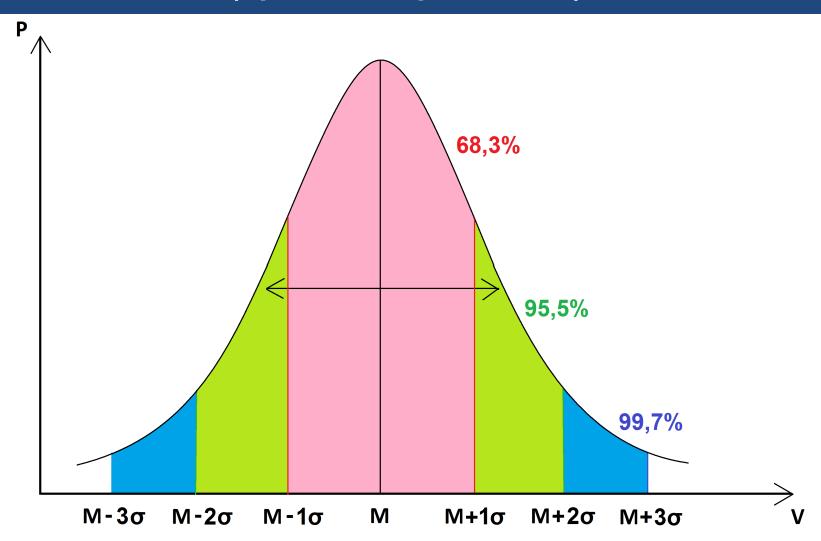
Показатели вариабельности ряда

 Коэффициент вариации – определяет степень колеблемости вариационного ряда

$$C_{v} = \frac{\sigma}{M} \times 100\%$$

$$C_v = \frac{1,33}{7,87} \times 100\% = 16,9\%$$

Критерии значений С_v:


<10% - слабая колеблемость

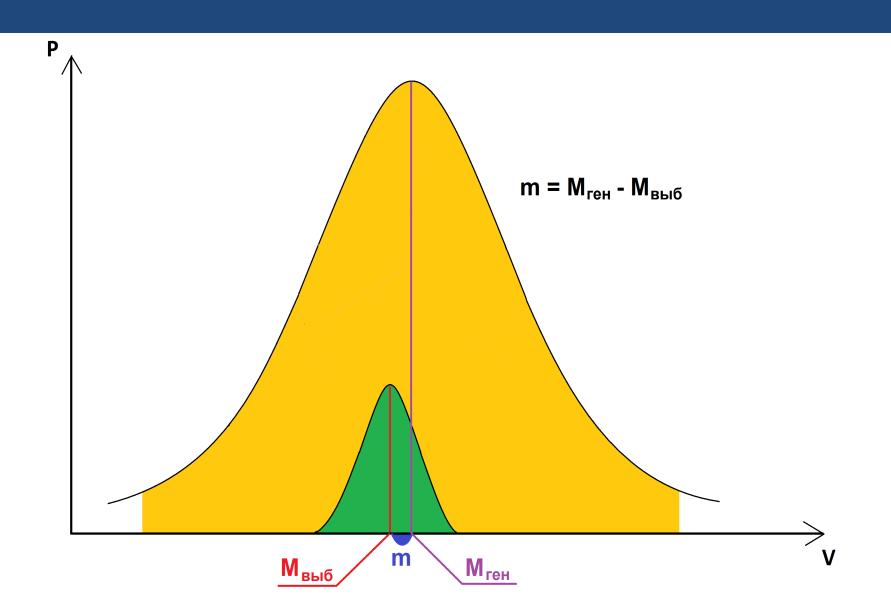
10-20% - средняя колеблемость

>20% - сильная колеблемость

Закон нормального распределения вариационного ряда

(правило «трёх сигм»)

Средняя ошибка средней арифметической


- Случайные ошибки репрезентативности разность между средними или относительными величинами, которые получены в выборочной совокупности и которые были бы получены при изучении генеральной совокупности.
- Средняя ошибка средней арифметической (m):

$$m = \pm \frac{\sigma}{\sqrt{n-1}}$$

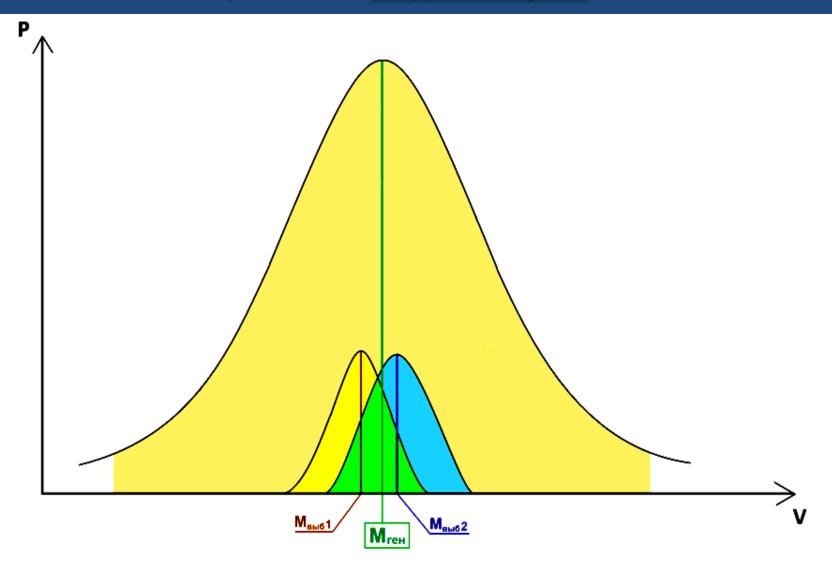
$$m = \pm \frac{\sigma}{\sqrt{n}}$$

Troumer:
$$m = \pm \frac{1,33}{\sqrt{55}} = \pm 0,18$$

Средняя ошибка средней арифметической

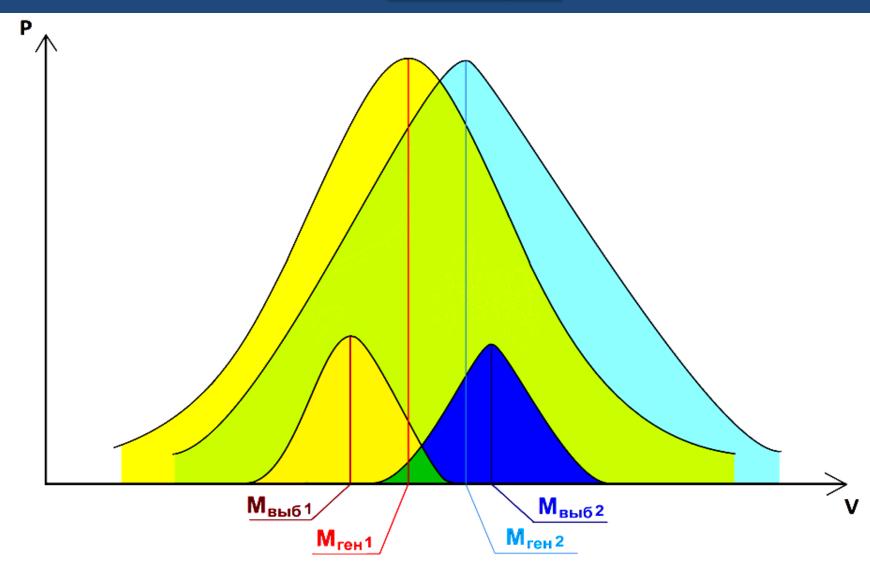
Оценка достоверности различий средних величин

Пример:


Средняя длительность стационарного лечения больных острым аппендицитом, прооперированных лапаротомным методом, составила 7,87±0,18 койкодней.

Средняя длительность стационарного лечения больных острым аппендицитом, прооперированных <u>лапароскопическим</u> методом, составила <u>6,85±0,23</u> койко-дней.

Вопрос: Достоверно ли сокращение длительности стационарного лечения больных острым аппендицитом, прооперированных лапароскопическим методом по сравнению с контрольной группой?


Оценка достоверности различий средних величин:

различия не достоверны

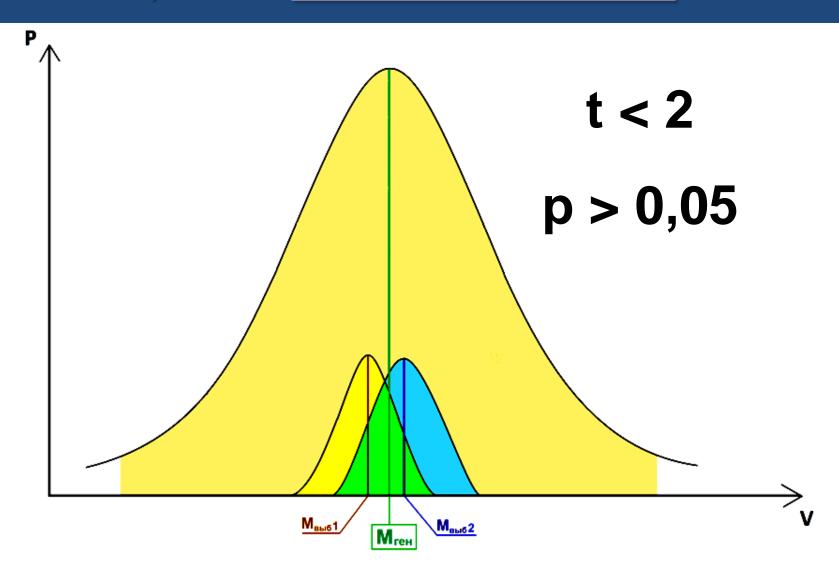
Оценка достоверности различий средних величин:

различия достоверны

t-критерий Стьюдента

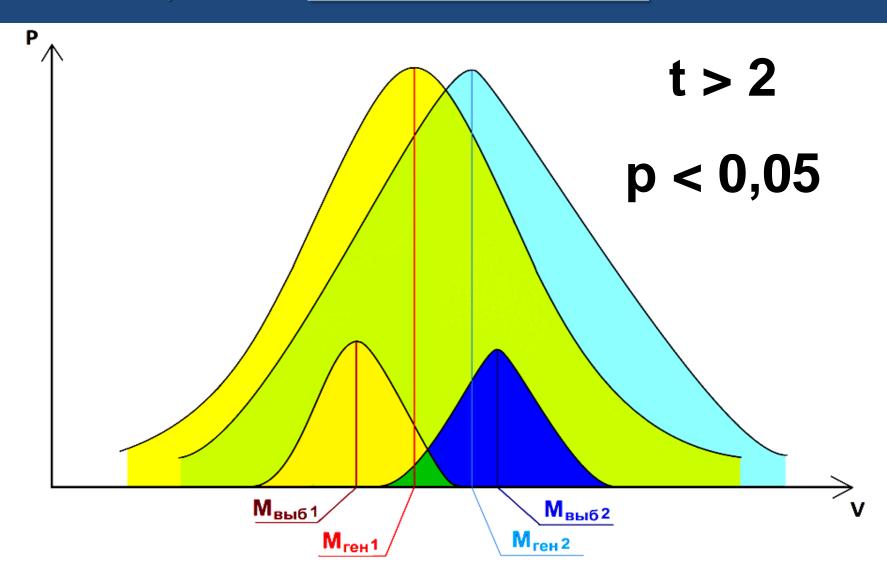
Разработан английским химиком У.Госсетом, (1908г., публикация в журнале «Биометрика» под псевдонимом «Student»)

$$t = \pm \frac{M_1 - M_2}{\sqrt{m_1^2 + m_2^2}}$$


Toumed:
$$t = \frac{M_1 - M_2}{\sqrt{m_1^2 + m_2^2}} = \frac{7,87 - 6,85}{\sqrt{0,18^2 + 0,23^2}} = 3,5$$

 $t < 2 \rightarrow p > 0,05$ — различия статистически не значимы $t > 2 \rightarrow p < 0,05$ — различия статистически значимы

р – урозень значимости (зероятность ошибки) – вероятность того, что две выборочные совокупности принадлежат одной генеральной совокупности, или вероятность того, что мы сочли различия существенными, а они на самом деле случайны


Оценка достоверности различий средних величин:

различия статистически не значимы

Оценка достоверности различий средних величин:

различия статистически значимы

Парный t-критерий Стьюдента

$$t = \pm \frac{Md}{m}$$

Используется в случае сравнения результатов измерений в одной и той же группе исследуемых до и после эксперимента

где: Md – средняя арифметическая изменений показателя для каждого исследуемого (d),

m – ее средняя ошибка (вычисляется по обычной формуле)

Условия применения t-критерия Стьюдента

- 1) Сравниваемые выборки должны соответствовать закону нормального распределения:
- Mo ≈ Me ≈ M;
- соблюдается «правило трех сигм»
- 2) Дисперсии сравниваемых выборок одинаковы (гомоскедастичны).

Это условие проверяется с помощью специальных статистических тестов.

Примеры ошибочных формулировок

- 1. Подсчет среднего количества M ± m производили по методу Стьюдента.
- 2. Статистическую обработку данных производили по методу Стьюдента с применением критерия хи-квадрат.
- 3. Результаты обрабатывали статистически с определением средней арифметической, стандартной ошибки и доверительного интервала при P > 0,05.
- 4. Корреляционный анализ проводили путем сравнения двух групп с помощью критерия t.
- 5. Материал обрабатывали статистически по методу Кучеренко.
- 6. Достоверность значений определяли по t-критерию Стьюдента
- 7. Статистическая обработка материала произведена с использованием мини-ЭВМ "Искра-1256" по стандартным программам.